Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 284, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454134

RESUMO

Language comprehension involves integrating low-level sensory inputs into a hierarchy of increasingly high-level features. Prior work studied brain representations of different levels of the language hierarchy, but has not determined whether these brain representations are shared between written and spoken language. To address this issue, we analyze fMRI BOLD data that were recorded while participants read and listened to the same narratives in each modality. Levels of the language hierarchy are operationalized as timescales, where each timescale refers to a set of spectral components of a language stimulus. Voxelwise encoding models are used to determine where different timescales are represented across the cerebral cortex, for each modality separately. These models reveal that between the two modalities timescale representations are organized similarly across the cortical surface. Our results suggest that, after low-level sensory processing, language integration proceeds similarly regardless of stimulus modality.


Assuntos
Idioma , Leitura , Humanos , Córtex Cerebral/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico/métodos
2.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37577530

RESUMO

Language comprehension involves integrating low-level sensory inputs into a hierarchy of increasingly high-level features. Prior work studied brain representations of different levels of the language hierarchy, but has not determined whether these brain representations are shared between written and spoken language. To address this issue, we analyzed fMRI BOLD data recorded while participants read and listened to the same narratives in each modality. Levels of the language hierarchy were operationalized as timescales, where each timescale refers to a set of spectral components of a language stimulus. Voxelwise encoding models were used to determine where different timescales are represented across the cerebral cortex, for each modality separately. These models reveal that between the two modalities timescale representations are organized similarly across the cortical surface. Our results suggest that, after low-level sensory processing, language integration proceeds similarly regardless of stimulus modality.

3.
J Neurosci ; 43(17): 3144-3158, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36973013

RESUMO

The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context. Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language. fMRI was used to record human brain activity while four subjects (two female) read words in four conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words. We then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling approach to compare the representation of semantic information across the four conditions. We find four consistent effects of varying context. First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared with stimuli with little context. Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. In individual subjects, only natural language stimuli consistently evoke widespread representation of semantic information. Third, context affects voxel semantic tuning. Finally, models estimated using stimuli with little context do not generalize well to natural language. These results show that context has large effects on the quality of neuroimaging data and on the representation of meaning in the brain. Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural regime.SIGNIFICANCE STATEMENT Context is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning use isolated words and isolated sentences with little context. Here, we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to natural language. We find that increasing context improves the quality of neuro-imaging data and changes where and how semantic information is represented in the brain. These results suggest that findings from studies using out-of-context stimuli may not generalize to natural language used in daily life.


Assuntos
Compreensão , Semântica , Humanos , Feminino , Compreensão/fisiologia , Encéfalo/fisiologia , Idioma , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
4.
Neuroimage ; 264: 119728, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334814

RESUMO

Encoding models provide a powerful framework to identify the information represented in brain recordings. In this framework, a stimulus representation is expressed within a feature space and is used in a regularized linear regression to predict brain activity. To account for a potential complementarity of different feature spaces, a joint model is fit on multiple feature spaces simultaneously. To adapt regularization strength to each feature space, ridge regression is extended to banded ridge regression, which optimizes a different regularization hyperparameter per feature space. The present paper proposes a method to decompose over feature spaces the variance explained by a banded ridge regression model. It also describes how banded ridge regression performs a feature-space selection, effectively ignoring non-predictive and redundant feature spaces. This feature-space selection leads to better prediction accuracy and to better interpretability. Banded ridge regression is then mathematically linked to a number of other regression methods with similar feature-space selection mechanisms. Finally, several methods are proposed to address the computational challenge of fitting banded ridge regressions on large numbers of voxels and feature spaces. All implementations are released in an open-source Python package called Himalaya.


Assuntos
Análise de Regressão , Humanos , Modelos Lineares
5.
J Neurosci ; 39(17): 3277-3291, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30792271

RESUMO

Precise timing makes the difference between harmony and cacophony, but how the brain achieves precision during timing is unknown. In this study, human participants (7 females, 5 males) generated a time interval while being recorded with magnetoencephalography. Building on the proposal that the coupling of neural oscillations provides a temporal code for information processing in the brain, we tested whether the strength of oscillatory coupling was sensitive to self-generated temporal precision. On a per individual basis, we show the presence of alpha-beta phase-amplitude coupling whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. Our results provide evidence that active oscillatory coupling engages α oscillations in maintaining the precision of an endogenous temporal motor goal encoded in ß power; the when of self-timed actions. We propose that oscillatory coupling indexes the variance of neuronal computations, which translates into the precision of an individual's behavioral performance.SIGNIFICANCE STATEMENT Which neural mechanisms enable precise volitional timing in the brain is unknown, yet accurate and precise timing is essential in every realm of life. In this study, we build on the hypothesis that neural oscillations, and their coupling across time scales, are essential for the coding and for the transmission of information in the brain. We show the presence of alpha-beta phase-amplitude coupling (α-ß PAC) whose strength was associated with the temporal precision of self-generated time intervals, not with their absolute duration. α-ß PAC indexes the temporal precision with which information is represented in an individual's brain. Our results link large-scale neuronal variability on the one hand, and individuals' timing precision, on the other.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Encéfalo/fisiologia , Atividade Motora/fisiologia , Percepção do Tempo/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Neurônios/fisiologia , Adulto Jovem
6.
PLoS Comput Biol ; 13(12): e1005893, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29227989

RESUMO

We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model "goodness of fit" via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Potenciais de Ação , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...